Classification of organic reaction mechanisms using machine learning

Classification of organic reaction mechanisms using machine learning

  • Simonetti, M., Cannas, DM, Just-Baringo, X., Vitorica-Yrezabal, IJ & Larrosa, I. Cyclometallated ruthenium catalyst enables late-stage targeted arylation of drugs. Wet. Chem. 10724-731 (2018).

    Article CAS Google Scholar

  • Salazar, CA et al. Tailor-made quinones support high-turnover Pd catalysts for oxidative CH arylation with O2. Science 3701454-1460 (2020).

    Article CAS Google Scholar

  • DiRocco, DA et al. A multifunctional catalyst that stereoselectively assembles prodrugs. Science 356426-430 (2017).

    Article CAS Google Scholar

  • Li, T. et al. Efficient, Chemoenzymatic Process for the Manufacture of the Bicyclic Boceprevir [3.1.0]proline intermediate based on amine oxidase catalyzed desymmetrization. J. Am. Chem. Soc. 1346467-6472 (2012).

    Article CAS Google Scholar

  • Nielsen LP, Stevenson CP, Blackmond DG & Jacobsen EN Mechanistic research leads to synthetic improvement in hydrolytic kinetic resolution of terminal epoxides. J. Am. Chem. Soc. 1261360-1362 (2004).

    Article CAS Google Scholar

  • van Dijk, L. et al. Mechanistic investigation of Rh(I)-catalyzed asymmetric Suzuki-Miyaura coupling with racemic allyl halides. Wet. Catal. 4284–292 (2021).

    Article Google Scholar

  • Camasso, NM & Sanford, MS Design, synthesis and carbon-heteroatom coupling reactions of organometallic nickel(IV) complexes. Science 3471218-1220 (2015).

    Article CAS Google Scholar

  • Milo, A., Neel, AJ, Toste, FD & Sigman, MS A data-intensive approach to mechanistic elucidation applied to chiral anion catalysis. Science 347737-743 (2015).

    Article CAS Google Scholar

  • Slager, TW et al. Desymmetrization of difluoromethylene groups by activation of CF bonds. Nature 583548-553 (2020).

    Article CAS Google Scholar

  • Cho, EJ et al. The palladium-catalyzed trifluoromethylation of aryl chlorides. Science 3281679-1681 (2010).

    Article CAS Google Scholar

  • Hutchinson, G., Alamillo-Ferrer, C. & Bures, J. Mechanistically guided design of an efficient and antioselective aminocatalytic alpha chlorination of aldehydes. J. Am. Chem. Soc. 1436805-6809 (2021).

    Article CAS Google Scholar

  • Schreyer, L. et al. Restricted acids catalyze asymmetric single aldolizations of acetaldehyde enolates. Science 362216-219 (2018).

    Article CAS Google Scholar

  • Peters, BK et al. Scalable and safe synthetic organic electroreduction inspired by Li-ion battery chemistry. Science 363838-845 (2019).

    Article CAS Google Scholar

  • Michaelis, L. & Menten, ML Die Kinetik der Invertinwirkung. Biochem. Z. 49333-369 (1913).

    CAS Google scholar

  • Blackmond, D. G. Reaction progress kinetic analysis: a powerful methodology for mechanistic studies of complex catalytic reactions. custom. Chem. Int. Ed. English 444302-4320 (2005).

    Article CAS Google Scholar

  • Matthew, JS et al. Exploring Pd-catalyzed ArX coupling reactions based on kinetic analysis of reaction progress. J. Org. Chem. 714711-4722 (2006).

    Article CAS Google Scholar

  • Bures, J. A simple graphical method to determine order in catalyst. custom. Chem. Int. Ed. English 552028-2031 (2016).

    Article CAS Google Scholar

  • Burés, J. Variable time normalization analysis: general graphical elucidation of reaction orders from concentration profiles. custom. Chem. Int. Ed. English 5516084-16087 (2016).

    Article Google Scholar

  • Shi, Y., Prieto, PL, Zepel, T., Grunert, S. & Hein, JE Automated experiments drive data science in chemistry. Acc. Chem. Res. 54546-555 (2021).

    Article CAS Google Scholar

  • Burger, B. et al. A mobile robot chemist. Nature 583237-241 (2020).

    Article CAS Google Scholar

  • Bedard, AC et al. Reconfigurable system for automated optimization of diverse chemical reactions. Science 3611220-1225 (2018).

    Article CAS Google Scholar

  • Steiner, S. et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science 363eaav2211 (2019).

    Article CAS Google Scholar

  • Clauset, A., Shalizi, CR & Newman, MEJ Power law distributions in empirical data. SIAM Rev. 51661-703 (2009).

    Article MATH Google Scholar

  • Martinez-Carrion, A. et al. Kinetic treatments for catalyst activation and deactivation processes based on variable time normalization analysis. custom. Chem. Int. Ed. English 5810189–10193 (2019).

    Article CAS Google Scholar

  • Bernacki, JP & Murphy, RM Model discrimination and mechanistic interpretation of kinetic data in protein aggregation studies. Biophys. J. 962871-2887 (2009).

    Article CAS Google Scholar

  • Pfluger, PM & Glorius, F. Molecular machine learning: the future of synthetic chemistry? custom. Chem. Int. Ed. English 5918860-18865 (2020).

    Article Google Scholar

  • Segler, MHS, Preuss, M. & Waller, MP Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555604-610 (2018).

    Article CAS Google Scholar

  • Raissi, M., Yazdani, A. & Karniadakis, GE Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 3671026-1030 (2020).

    Article CAS MATH Google Scholar

  • Hermann, J., Schatzle, Z. & Noe, F. Deep neural network solution of the electronic Schrödinger equation. Wet. Chem. 12891-897 (2020).

    Article CAS Google Scholar

  • Schilden, BJ et al. Bayesian reaction optimization as a tool for chemical synthesis. Nature 59089-96 (2021).

    Article CAS Google Scholar

  • Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596590-596 (2021).

    Article CAS Google Scholar

  • Jumper, J. et al. High Accuracy Prediction of Protein Structure with AlphaFold. Nature 596583-589 (2021).

    Article CAS Google Scholar

  • Hueffel, JA et al. Accelerated identification of dinuclear palladium catalysts by unsupervised machine learning. Science 3741134–1140 (2021).

    Article CAS Google Scholar

  • Haitao, X., Junjie, W. & Lu, L. In Proc. 1st International Conference on E-Business Intelligence 303-309 (Atlantis Press, 2010).

  • Batista, GEAPA et al. In Advances in Intelligent Data Analytics VI (ed. Fazel Famili, A. et al.) 24-35 (Springer, 2005).

  • Wei, J.-M., Yuan, X.-J., Hu, Q.-H. & Wang, S.-Q. A new measure for evaluating classifiers. Expert system. Appl. 373799-3809 (2010).

    Article Google Scholar

  • Alberton, AL, Schwaab, M., Schmal, M. & Pinto, JC Experimental errors in kinetic tests and their influence on the precision of estimated parameters. Part I – analysis of first order reactions. Chem. Scary. J. 155816-823 (2009).

    Article CAS Google Scholar

  • Pacheco, H., Thiengo, F., Schmal, M. & Pinto, JC A family of kinetic distributions for interpretation of experimental fluctuations in kinetic problems. Chem. Scary. J. 332303-311 (2018).

    Article CAS Google Scholar

  • Storer, AC, Darlison, MG & Cornish-Bowden, A. The nature of experimental errors in enzyme kinetic measurements. Biochem. J 151361-367 (1975).

    Article CAS Google Scholar

  • Valko, E. & Turányi, T. In Lindner, E., Micheletti, A. & Nunes, C. (eds) Mathematical modeling in real life problems. Mathematics in Industry https://doi.org/10.1007/978-3-030-50388-8_3 (2020).

  • Thiel, V., Wannowius, KJ, Wolff, C., Thiele, CM & Plenio, H. Ring-closing metathesis reactions: interpretation of conversion time data. Chem. EUR. J. 1916403-16414 (2013).

    Article CAS Google Scholar

  • Joannou, MV, Hoyt, JM & Chirik, PJ Investigating the mechanism of inter- and intramolecular iron-catalyzed [2 + 2] cycloaddition of alkenes. J. Am. Chem. Soc. 1425314-5330 (2020).

    Article CAS Google Scholar

  • Knap, SMM et al. Mechanistic studies of alkene isomerization catalyzed by CCC pincer complexes of iridium. Organometals 33473-484 (2014).

    Article CAS Google Scholar

  • Stroek, W., Keilwerth, M., Pividori, DM, Meyer, K. & Albrecht, M. An iron-mesoionic carbene complex for catalytic intramolecular CH amination using organic azides. J. Am. Chem. Soc. 14320157–20165 (2021).

    Article CAS Google Scholar

  • Lehnherr, D. et al. Discovery of a light-induced dark catalytic cycle using in situ LED NMR spectroscopy. J. Am. Chem. Soc. 14013843-13853 (2018).

    Article CAS Google Scholar

  • Ludwig, JR, Zimmerman, PM, Gianino, JB & Schindler, CS Iron(III)-catalyzed carbonyl-olefin metathesis. Nature 533374-379 (2016).

    Article CAS Google Scholar

  • Albright, H. et al. Carbonyl-olefin catalytic metathesis of aliphatic ketones: iron(III) homodimers as Lewis acidic superelectrophiles. J. Am. Chem. Soc. 1411690–1700 (2019).

    Article CAS Google Scholar

  • Janse van Rensburg, W., Steynberg, PJ, Meyer, WH, Kirk, MM & Forman, GS DFT prediction and experimental observation of substrate-induced catalyst decomposition in ruthenium-catalyzed olefin metathesis. J. Am. Chem. Soc. 12614332-14333 (2004).

    Article Google Scholar

  • van der Eide, EF & Piers, WE Mechanistic insights into the ruthenium-catalyzed diene ring-closing metathesis reaction. Wet. Chem. 2571-576 (2010).

    Article Google Scholar

  • Leave a Reply

    Your email address will not be published. Required fields are marked *